Is there relevance of chaos in numerical solutions of quantum billiards?
نویسندگان
چکیده
In numerically solving the Helmholtz equation inside a connected plane domain with Dirichlet boundary conditions (the problem of the quantum billiard) one surprisingly faces enormous difficulties if the domain has a problematic geometry such as various nonconvex shapes. We have tested several general numerical methods in solving the quantum billiards. Following our previous paper (Li and Robnik 1995) where we analyzed the Boundary Integral Method (BIM), in the present paper we investigate systematically the so-called Plane Wave Decomposition Method (PWDM) introduced and advocated by Heller (1984, 1991). In contradistinction to BIM we find that in PWDM the classical chaos is definitely relevant for the numerical accuracy at fixed density of discretization on the boundary b (b = number of numerical nodes on the boundary within one de Broglie wavelength). This can be understood qualitatively and is illustrated for three one-parameter families of billiards, namely Robnik billiard, Bunimovich stadium and Sinai billiard. We present evidence that it is not only the ergodicity which matters, but also the Lyapunov exponents and Kolmogorov entropy. Although we have no quantitative theory we believe that this phenomenon is one manifestation of quantum chaos. PACS numbers: 02.70.Rw, 05.45.+b, 03.65.Ge, 03.65.-w Submitted to Journal of Physics A e-mail [email protected] e-mail [email protected]
منابع مشابه
Relevance of chaos in numerical solutions of quantum billiards
In this paper we have tested several general numerical methods in solving the quantum billiards, such as the boundary integral method (BIM) and the plane wave decomposition method (PWDM). We performed extensive numerical investigations of these two methods in a variety of quantum billiards: integrable systens (circles, rectangles, and segments of circular annulus), Kolmogorov-Armold-Moser (KAM)...
متن کاملVibrating Quantum Billiards on Riemannian Manifolds
Quantum billiards provide an excellent forum for the analysis of quantum chaos. Toward this end, we consider quantum billiards with time-varying surfaces, which provide an important example of quantum chaos that does not require the semiclassical (~ −→ 0) or high quantum-number limits. We analyze vibrating quantum billiards using the framework of Riemannian geometry. First, we derive a theorem ...
متن کاملOn the Rate of Quantum Ergodicity on hyperbolic Surfaces and Billiards
The rate of quantum ergodicity is studied for three strongly chaotic (Anosov) systems. The quantal eigenfunctions on a compact Riemannian surface of genus g = 2 and of two triangular billiards on a surface of constant negative curvature are investigated. One of the triangular billiards belongs to the class of arithmetic systems. There are no peculiarities observed in the arithmetic system conce...
متن کاملQuantum Chaos: An Exploration of the Stadium Billiard Using Finite Differences
We investigate quantum chaos in chaotic billiards by modelling the square (non-chaotic) and the stadium (chaotic) billiards as 2D infinite square wells. We developed MATLAB code that uses grid points and the method of finite differences to numerically solve the Schrödinger equation for either case. We successfully obtained the “scar” structures in higher energy eigenfunctions for the stadium ca...
متن کاملBoundary integral method applied in chaotic quantum billiards
The boundary integral method (BIM) is a formulation of Helmholtz equation in the form of an integral equation suitable for numerical discretization to solve the quantum billiard. This paper is an extensive numerical survey of BIM in a variety of quantum billiards, integrable (circle, rectangle), KAM systems (Robnik billiard) and fully chaotic (ergodic, such as stadium, Sinai billiard and cardio...
متن کامل